Abstract
Morphometric analyses of the neurons and microvessels of perfusion-fixed hypogastric (HG) and 13th thoracic (T13) ganglia have been performed in male Wistar rats aged 4, 24 and 30 mo. Estimations of HG volume employing the Cavalieri principle have also been performed and showed that the size of the aged HG is increased by 42%. Routine histological staining of the ganglia with Masson's trichrome indicated that this may be due to the increased amount of interstitial connective tissue which was apparent in the aged animals. The number of neurons per unit area progressively decreased by 38% between ages 4 and 24 mo and by 16% between ages 24 and 30 mo in the HG and by 25% (4 and 24 mo) and 2% (24 and 30 mo) in the T13 ganglion. The total number of neurons in the HG however, estimated by a physical disector analysis, was constant with age. The number of microvessels per unit area, microvessel diameter, neuronal and nuclear areas did not differ significantly between the 3 age groups studied. This observed increase in ganglionic volume and decrease in neuronal packing density may be associated with changes in the extracellular matrix, in particular in glycosaminoglycans whose presence was indicated by metachromasia of the ganglia with toluidine blue. The extracellular matrix was therefore characterised using a panel of monoclonal antibodies against glycosaminoglycans and laminin. Chondroitin-6 sulphate and chondroitin-4 sulphate were present in the interstitial connective tissue, and there was an increase in the expression of both these epitopes at 24 mo, noteably surrounding neuron cell bodies. The expression of chondroitin-4 sulphate/dermatan sulphate was unchanged, thus implying a decreased expression of dermatan sulphate with age. Keratan sulphate and the native chondroitin sulphate epitopes were absent from the ganglia at both ages. Laminin expression was increased in the aged ganglia. It is therefore clear that the constituents of the extracellular matrix are not constant throughout the adult lifespan and that the extracellular matrix may influence neuronal survival in old age. This is the first report characterising age-related changes in the extracellular matrix of autonomic ganglia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.