Abstract
Aging is mostly characterized by a progressive decline of neuronal function that involves both the central and the peripheral nervous system. The aging process is accompanied by changes in either the number or the size of neurons. However, these data are controversial and not very well known in the sympathetic ganglia of large mammals. Hence, the present investigation aimed to study the dog's caudal mesenteric ganglion (CMG) in three different periods of postnatal development, searching for qualitative and quantitative alterations. The CMG is responsible for the large intestine, internal anal sphincter, and partially the urogenital system innervations. Nine dead male dogs from the Veterinary Hospital of the College of Veterinary Medicine at University of São Paulo were divided into three well-defined age groups (1-2 months old, 1-2 years old, and 5-10 years old). The stereological study was pursued using the physical disector method combined to the Cavalieri principle. The postnatal development was accompanied by an increase in the nonneuronal tissue amount and in ganglion volume. Additionally, the total number of neurons also increased during aging (from 70,140 to 1,204,516), although the neuronal density showed an opposite trend (from 29,911 to 11,500 mm(-3)). Due to the interrelation between either body weight or ganglion volume and aging in the dogs investigated in this study, it was possible to predict the total number of neurons in CMG using both body weight and ganglion volume in an attempt to verify whether or not size and total number of neurons are both allometrically and aging ruled, i.e., if either the animal's body weight and ganglion volume or aging influence these parameters. The prediction of the total number of neurons was very close to the initially estimated values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.