Abstract
This investigation confirms that the existence of the hydrogen spillover effect (HSPE) in the case of metal catalysts supported on non-reducible monoxides or zeolites is based on a strong corpus of experimental studies, enlarging and deepening previous statements. The structure of hydrogen spillover consists of H/OH pairs conjugated with Mm+/Op− pairs (p = 1 or 2). It is formed by dehydroxylation followed by OH/OH exchange or by the hydrogenation of conjugated pairs. Such a structure imposes the following chemical processes: (i) hydrogenations take place over OH Brönsted acid sites (BAS); (ii) they are excluded over Mm+/Op− Lewis acid sites (LASs), which are deactivating or dehydrogenating; (iii) surface diffusion of hydrogen spillover proceeds through the migration of H/H pairs from LASs to LASs; (iv) the diffusion rates are determined by the oxide supports’ basicity; and (v) H/D exchange is proof of the existence of hydrogen spillover. The nature of hydrogen spillover (radical/ionic) depends on the polarity of the H/OH pairs, which in turn, is determined by the basicity of the support. Our concept of conjugated active sites is a good descriptor of the reaction paths at the molecular level. The view of LASs bringing about additional activity to BAS is not pertinent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.