Abstract
CsnA, a chitosanase from Renibacterium sp. QD1, has great potential for industrial applications due to its high yield and broad pH stability. In this study, a specific Glu160 in CsnA was identified by sequence alignment, and structural analysis and MD simulation predicted that Glu160 formed a hydrogen-bond network with Lys163 and Thr114. To evaluate the effect of the network, we constructed four mutants, including E160A, E160Q, K163A, and T114A, which partially or completely destroy this network. Characterization of these mutants demonstrated that the disruption of the network significantly decreased the enzyme thermostability. The underlying mechanisms responsible for the change of thermostability analyzed by circular dichroism spectroscopy revealed that the hydrogen-bond network conferred the structural stability of CsnA. Moreover, the length of the side chain of residue at 160 impacted conformational stability of the enzyme. Taken together, the hydrogen-bond network around Glu160 plays important roles in stabilization of CsnA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.