Abstract

The quantum mechanical charge-field molecular dynamics (QMCF-MD) simulation method was employed to study the hydration properties of gadolinium(III) and terbium(III). Slight differences of the solvation shells’ structural and dynamical properties were discovered. While the LnO radial distribution functions are in excellent agreement with recent experiments, average coordination numbers of 8.5 (Gd) and 8.4 (Tb) were found. Vivid ligand exchange dynamics along with rapid intrashell rearrangements were observed, underlined by mean residence times in the picosecond range, which is characteristic for trivalent lanthanoides according to quantum mechanical simulations. Vibrational analysis yielded ion-water force constants below 100Nm−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.