Abstract

First-principles calculations and quantum transport simulations were performed to investigate the photogalvanic effect (PGE) in the high magnetic transition temperature ferromagnetic two-dimensional (2D) semiconductor MnNCl and the 2D lateral MnNI-MnNCl heterostructure. The MnNI-MnNCl heterostructure exhibits significantly enhanced non-centrosymmetric properties, resulting in increased PGE photocurrent and spin current around 0.4 eV. Compared to MnNCl, the photocurrent is amplified by 4–6 orders of magnitude and demonstrates excellent polarization sensitivity, with an extinction ratio reaching 83.92. These results underscore the potential of MnNCl-MnNI lateral heterostructures for use in self-powered, polarization-sensitive infrared detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.