Abstract

The (early) hydration mechanisms of two different binder systems used for shotcrete were investigated: the so far almost unexplored low sulfate binder (spray binder), used in the field of dry-mix shotcrete; and ordinary Portland cement, accelerated by aluminum sulfate, widely used for wet-mix shotcrete. The basis for the fast setting of the spray binder is the rapid dissolution of C3A and the subsequent formation of flaky CO3-AFm phases. Thereby induced high aluminum concentrations in the pore solution lead to a blockage of alite dissolution during the first hours of hydration. At later stages, higher amounts of portlandite are formed in the dry-mix, compared to the wet-mix system. The lower calcium availability for portlandite formation in the wet-mix system is explained by an enhanced formation of C–A–S–H phases with a higher Ca:Si ratio. Additionally, wet-mix systems show lower porosity and higher compressive strength after 1 d of hydration and beyond.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call