Abstract

BackgroundOlfaction is a versatile sensory mechanism for detecting thousands of volatile odorants. Although molecular basis of odorant signaling is relatively well understood considerable gaps remain in the complete charting of all relevant gene products. To address this challenge, we applied RNAseq to four well-characterized human olfactory epithelial samples and compared the results to novel and published mouse olfactory epithelium as well as 16 human control tissues.ResultsWe identified 194 non-olfactory receptor (OR) genes that are overexpressed in human olfactory tissues vs. controls. The highest overexpression is seen for lipocalins and bactericidal/permeability-increasing (BPI)-fold proteins, which in other species include secreted odorant carriers. Mouse-human discordance in orthologous lipocalin expression suggests different mammalian evolutionary paths in this family.Of the overexpressed genes 36 have documented olfactory function while for 158 there is little or no previous such functional evidence. The latter group includes GPCRs, neuropeptides, solute carriers, transcription factors and biotransformation enzymes. Many of them may be indirectly implicated in sensory function, and ~70 % are over expressed also in mouse olfactory epithelium, corroborating their olfactory role.Nearly 90 % of the intact OR repertoire, and ~60 % of the OR pseudogenes are expressed in the olfactory epithelium, with the latter showing a 3-fold lower expression. ORs transcription levels show a 1000-fold inter-paralog variation, as well as significant inter-individual differences. We assembled 160 transcripts representing 100 intact OR genes. These include 1–4 short 5’ non-coding exons with considerable alternative splicing and long last exons that contain the coding region and 3’ untranslated region of highly variable length. Notably, we identified 10 ORs with an intact open reading frame but with seemingly non-functional transcripts, suggesting a yet unreported OR pseudogenization mechanism. Analysis of the OR upstream regions indicated an enrichment of the homeobox family transcription factor binding sites and a consensus localization of a specific transcription factor binding site subfamily (Olf/EBF).ConclusionsWe provide an overview of expression levels of ORs and auxiliary genes in human olfactory epithelium. This forms a transcriptomic view of the entire OR repertoire, and reveals a large number of over-expressed uncharacterized human non-receptor genes, providing a platform for future discovery.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2960-3) contains supplementary material, which is available to authorized users.

Highlights

  • Olfaction is a versatile sensory mechanism for detecting thousands of volatile odorants

  • Four of them were identified by gene marker analysis as relatively high quality olfactory epithelium, and were selected for RNA sequencing

  • The mouse RNAseq came from different mouse strains, sex and age, the correlation values between the different strains as well as within strains was high and significant (MOE1-MOE2 0.945, MOE1-MOE3 0.947, MOE2-MOE3 0.978, Pearson)

Read more

Summary

Introduction

Olfaction is a versatile sensory mechanism for detecting thousands of volatile odorants. The tissue analyzed here, is heterogonous, containing besides the sensory neurons epithelial supporting cells and progenitor basal cells, as well as sub-epithelial Bowman’s glands cells that secrete the mucus within which olfactory cilia reside, microvillar cells, and fingerlike microvilli cells [5]. While in mouse this tissue is readily available, the human counterpart is harder to obtain, due to difficulties in dissection and in defining the exact anatomically boundaries [6].

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.