Abstract

The present study reports the exon-intron organization of the human RI alpha gene of cAMP-dependent protein kinase and approximately kilobases (kb) of the 5'-flanking region obtained by isolation and sequencing of several phage clones from human genomic libraries. The RI alpha gene is composed of nine coding exons of varying lengths, separated by introns, giving the gene a total length of at least 21 kb. our recent cloning of a processed RI alpha pseudogene with a 5'-noncoding region different from the previously reported RI alpha complementary RNA indicated that the RI alpha gene may have multiple leader exons giving rise to alternately spliced messenger RNAs (mRNAs). Reverse transcription of human testis RNA followed by PCR identified two different RI alpha mRNA species (RI alpha 1a and RI alpha 1b) containing distinct sequences due to alternately splicing the gene. The previously known RI alpha 1b mRNA revealed low constitutive expression in a human B lymphoid cell line (Reh) and was stimulated only 4- to 6-fold by treatment with cAMP. In contrast, very low levels of the novel RI alpha 1a mRNA were present in untreated Reh cells, but were stimulated 40-to 50-fold by cAMP. The 5'-flanking sequence of the RI alpha gene was G/C rich and did not contain any TATA box. Several putative transcription initiation sites were identified in front of each leader exon (exons 1a and 1b) by the 5'-rapid amplification of complementary DNA ends technique. To determine whether the sequences 5' of both leader exons had promoter activities, the 5'-flanking sequences of exons 1a and 1b were inserted in front of a chloramphenicol acetyltransferase reporter gene, and their ability to direct transcription were examined. Transfection of these constructs into rat GH4C1 cells demonstrated that both constructs had promoter activities, as evidenced by high levels of chloramphenicol acetyltransferase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.