Abstract

RAS-driven tumors are often difficult to treat with conventional therapies and therefore, novel treatment strategies are necessary. The present study describes a promising targeted therapeutic strategy against non-small cell lung cancer (NSCLC) harboring KRAS mutations, which has intrinsic resistance to MEK inhibition. Results showed that intrinsic resistance to MEK inhibition occurred via high AKT expression by PI3K activation as a bypass pathway. The HSP90 inhibitor AUY922 suppressed PI3K-AKT-mTOR and RAF-MEK-ERK, and rendered cells sensitive to trametinib (GSK1120212). Synergy from the combination of the two drugs was observed in only sub-therapeutic concentrations of either drug. Dual inhibition of the HSP90 and MEK signaling pathways with sub-therapeutic doses may represent a potent therapeutic strategy to treat KRAS-mutant NSCLC with intrinsic resistance to MEK inhibition and to resolve the toxicity observed upon dual inhibition of AKT and MEK at therapeutic doses in clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.