Abstract

ABSTRACT We explore the host galaxies of compact-object binaries (black hole–black hole binaries, BHBs; neutron star–black hole binaries, NSBHs; double–neutron stars; DNSs) across cosmic time, by means of population-synthesis simulations combined with the Illustris cosmological simulation. At high redshift (z ≳ 4), the host galaxies of BHBs, NSBHs, and DNSs are very similar and are predominantly low-mass galaxies (stellar mass M < 1011 M⊙). If z ≳ 4, most compact objects form and merge in the same galaxy, with a short delay time. At low redshift (z ≤ 2), the host galaxy populations of DNSs differ significantly from the host galaxies of both BHBs and NSBHs. DNSs merging at low redshift tend to form and merge in the same galaxy, with relatively short delay time. The stellar mass of DNS hosts peaks around ∼1010–1011 M⊙. In contrast, BHBs and NSBHs merging at low redshift tend to form in rather small galaxies at high redshift and then to merge in larger galaxies with long delay times. This difference between DNSs and black hole binaries is a consequence of their profoundly different metallicity dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.