Abstract

A simple and sensitive fluorescence anisotropy method was developed for lysozyme, employing the coupling of fluorophore, 6-carboxyfluorescein (FAM), with lysozyme upon recognition between the target molecule and its DNA aptamer. It was found in this study that the rotational dynamic of the detecting system is crucial to obtain a high anisotropy signal that cannot always be achieved by simply increasing the molecular volume, because molecular volume increase may not be able to efficiently retard the rotational movement of the fluorophore. FAM was selected as the label of the ssDNA aptamer to effectively facilitate the change of the fluorophore from a primarily independent segmental movement to slow global rotation. The time-resolved measurements, including lifetime and dynamic fluorescence anisotropy, were conducted to study the recognition interaction and to better understand the methodology. The proposed method had a wide linear dynamic range of 12.5–300 nM and a high sensitivity with the limit of detection of 4.9 nM (3S/N). This proposed method was successfully applied to assay of human salivary lysozyme. The results based on the standard addition recovery and comparison with enzyme-linked immunosorbent assay (ELISA) demonstrated the feasibility of this method for biological samples. Using coupling between the fluorophore and the analyte can be one of the approaches working toward expanding the application of fluorescence anisotropy based on aptamer–target and antibody–antigen recognitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.