Abstract

The relative entropy is a measure of the distinguishability of two quantum states. A great deal of progress has been made in the study of the relative entropy between an excited state and the vacuum state of a conformal field theory (CFT) reduced to a spherical region. For example, when the excited state is a small perturbation of the vacuum state, the relative entropy is known to have a universal expression for all CFT’s [1]. Specifically, the perturbative relative entropy can be written as the symplectic flux of a certain scalar field in an auxiliary AdS-Rindler spacetime [1]. Moreover, if the CFT has a semi-classical holographic dual, the relative entropy is known to be related to conserved charges in the bulk dual spacetime [2]. In this paper, we introduce a one-parameter generalization of the relative entropy which we call refined Rényi relative entropy. We study this quantity in CFT’s and find a one-parameter generalization of the aforementioned known results about the relative entropy. We also discuss a new family of positive energy theorems in asymptotically locally AdS spacetimes that arises from the holographic dual of the refined Rényi relative entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.