Abstract
Globally conformal invariant quantum field theories in a D-dimensional space-time (D even) have rational correlation functions and admit an infinite number of conserved (symmetric traceless) tensor currents. In a theory of a scalar field of dimension D-2 they were demonstrated to be generated by bilocal normal products of free massless scalar fields with an O(N), U(N), or Sp(2N) (global) gauge symmetry [B. Bakalov, N. M. Nikolov, K.-H. Rehren, and I. Todorov, “Unitary positive energy representations of scalar bilocal fields,” Commun. Math. Phys. 271, 223–246 (2007)10.1007/s00220-006-0182-2; e-print arXiv:math-ph/0604069v3; B. Bakalov, N. M. Nikolov, K.-H. Rehren, and I. Todorov, “Infinite dimensional Lie algebras in 4D conformal quantum field theory,” J. Phys. A Math Theor. 41, 194002 (2008)10.1088/1751-8113/41/19/194002; e-print arXiv:0711.0627v2 [hep-th]]. Recently, conformal field theories “with higher spin symmetry” were considered for D = 3 by Maldacena and Zhiboedov [“Constraining conformal field theories with higher spin symmetry,” e-print arXiv:1112.1016 [hep-th]] where a similar result was obtained (exploiting earlier study of CFT correlators). We suggest that the proper generalization of the notion of a 2D chiral algebra to arbitrary (even or odd) dimension is precisely a conformal field theory (CFT) with an infinite series of conserved currents. We recast and complement (part of) the argument of Maldacena and Zhiboedov into the framework of our earlier work. We extend to D = 4 the auxiliary Weyl-spinor formalism developed by Giombi et al. [“A note on CFT correlators in three dimensions,” e-print arXiv:1104.4317v3 [hep-th]] for D = 3. The free field construction only follows for D > 3 under additional assumptions about the operator product algebra. The problem of whether a rational CFT in 4D Minkowski space is necessarily trivial remains open.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.