Abstract
Eukaryotic histone H3-H4 tetramers contain a putative copper (Cu2+) binding site at the H3-H3' dimerization interface with unknown function. The coincident emergence of eukaryotes with global oxygenation, which challenged cellular copper utilization, raised the possibility that histones may function in cellular copper homeostasis. We report that the recombinant Xenopus laevis H3-H4 tetramer is an oxidoreductase enzyme that binds Cu2+ and catalyzes its reduction to Cu1+ in vitro. Loss- and gain-of-function mutations of the putative active site residues correspondingly altered copper binding and the enzymatic activity, as well as intracellular Cu1+ abundance and copper-dependent mitochondrial respiration and Sod1 function in the yeast Saccharomyces cerevisiae The histone H3-H4 tetramer, therefore, has a role other than chromatin compaction or epigenetic regulation and generates biousable Cu1+ ions in eukaryotes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.