Abstract
Histone Function Eukaryotic histones serve as structural elements to package DNA. However, they contain a copper-binding site for which the biological relevance is unknown. Copper homeostasis is critical for several fundamental eukaryotic processes, including mitochondrial respiration. Attar et al. hypothesized that histones may play a critical role in cellular copper utilization (see the Perspective by Rudolph and Luger). Using a multifaceted approach ranging from in vitro biochemistry to in vivo genetic and molecular analyses, they found that the histone H3-H4 tetramer is an oxidoreductase enzyme that catalyzes reduction of cupric ions, thereby providing biologically usable cuprous ions for various cellular processes. This work opens a new front for chromatin biology, with implications for eukaryotic evolution and human biology and disease. Science , this issue p. [59][1]; see also p. [33][2] [1]: /lookup/doi/10.1126/science.aba8740 [2]: /lookup/doi/10.1126/science.abc8242
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.