Abstract
This article analyzes the inhomogeneous Hilbert boundary value problem for an upper half-plane with the finite index and boundary condition on the real axis for one generalized Cauchy–Riemann equation with a singular point on the real axis. A structural formula was obtained for the general solution of this equation under restrictions leading to an infinite index of the logarithmic order of the accompanying Hilbert boundary value problem for analytic functions. This formula and the solvability results of the Hilbert problem in the theory of analytic functions were applied to solve the set boundary value problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.