Abstract

Small extracellular vesicles (sEVs) have the ability to transfer genetic material between cells, but their role in mediating HBV infection and regulating M1 macrophages to promote immune evasion remains unclear. In this study, we utilized PMA + LPS + IFN-γ to induce THP-1 into M1 macrophages. We then extracted sEVs from HepG2.2.15 cell and treated the M1 macrophages with these sEVs. QPCR detection revealed the presence of HBV-DNA in the M1 macrophages. Additionally, RT-qPCR and WB analysis demonstrated a significantly decreased in the expression of TLR4, NLRP3, pro-caspase-1, caspase-1p20, IL-1β and IL-18 in the M1 macrophages (P < 0.05). Furthermore, RT-qPCR results displayed high expression levels of that miR-146a and FEN-1 in the sEVs derived from HepG2.2.15 cells (P < 0.01). RT -qPCR and WB analysis showed that these sEVs enhanced the expression of FEN-1 or miR-146a in the M1 macrophages through miR-146a or FEN-1 (P < 0.05), while simultaneously reducing the expression of TLR4, NLRP3, caspase-1p20, IL-1β and IL-18 in the M1 macrophages (P < 0.05). In summary, our findings indicate that sEVs loaded with HBV inhibit the inflammatory function of M1 macrophages and promote immune escape. Additionally, miR-146a and FEN-1 present in the sEVs play a crucial role in this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.