Abstract

This study deals with a reinvestigation on the maximum oxidation state of gold. Density functional calculations are performed on geometries and stabilities of AuCln species for n = 1–6 in their neutral and anionic states. The calculations clearly reveal that the maximum oxidation state of Au is limited to +5. The high adiabatic electron affinities of AuCln (n ≥ 2), as compared to Cl, suggest their superhalogen behavior. The interaction of AuCln superhalogens with an alkali metal, K is found to be similar to but stronger than that between K and Cl, leading to the formation of KAuCln complexes. The stabilities of these complexes explore the possibility of synthesis of new class of salts by interaction of with appropriate metal cations. © 2014 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.