Abstract

ABSTRACTUtilizing the reactive molecular dynamics (ReaxFF MD) simulation, we conducted a comprehensive study on the impact of basicity (OH−/Al3+ ratio), concentration, and temperature on the hydrolysis and polymerization reactions of Al3+‐solvated molecules. Through simulations, we analyzed the structural changes, energy fluctuations of the system, and the evolution patterns of reaction products under different parameters, which were subsequently validated by experimental data. The research results indicate that hydroxide ions in the solution directly influence the breakage of OH bonds in the coordinating water molecules of solvated aluminum ions. This, in turn, affects the number of H2O and OH− ions coordinated with Al3+, leading to changes in hydrolysis products. Additionally, the number of OH− ions surrounding Al3+ affects the electrostatic repulsion, making it easier for polymerization reactions to occur as the system approaches the point of zero charge. On the other hand, an increase in concentration and temperature enhances the frequency of cluster collisions, thus contributing to an increase in polymerization degree. The experimental results align closely with our simulated predictions. As the pH value increases, the particle size exhibits a trend of first increasing and then decreasing, reaching a maximum at the point of zero charge. Simultaneously, an increase in concentration also prompts an increase in particle size. The combination of these empirical results with simulations enhances the credibility and reliability of our model's predictive capabilities. This study not only expands our understanding of the relevant chemical reaction processes but also provides important theoretical support for practical applications in related fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.