Abstract

The Jet Propulsion Laboratory's High-Altitude Monolithic Microwave Integrated Circuit (MMIC) Sounding Radiometer (HAMSR) is a 25-channel cross-track scanning microwave sounder with channels near the 60- and 118-GHz oxygen lines and the 183-GHz water-vapor line. It has previously participated in three hurricane field campaigns, namely, CAMEX-4 (2001), Tropical Cloud Systems and Processes (2005), and NASA African Monsoon Multidisciplinary Analyses (2006). The HAMSR instrument was recently extensively upgraded for the deployment on the Global Hawk (GH) unmanned aerial vehicle platform. One of the major upgrades is the addition of a front-end low-noise amplifier, developed by JPL, to the 183-GHz channel which reduces the noise in this channel to less than 0.1 K at the sensor resolution (~2 km). This will enable HAMSR to observe much smaller scale water-vapor features. Another major upgrade is an enhanced data system that provides onboard science processing capability and real-time data access. HAMSR has been well characterized, including passband characterization, along-scan bias characterization, and calibrated noise-performance characterization. The absolute calibration is determined in-flight and has been estimated to be better than 1.5 K from previous campaigns. In 2010, HAMSR participated in the NASA Genesis and Rapid Intensification Processes campaign on the GH to study tropical cyclone genesis and rapid intensification. HAMSR-derived products include observations of the atmospheric state through retrievals of temperature, water-vapor, and cloud-liquid-water profiles. Other products include convective intensity, precipitation content, and 3-D storm structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.