Abstract
Spacecraft-to-ground bistatic radar is an established technique that has enabled the study of the planetary surfaces and near sub-surfaces properties by using the telecommunication signals amplitude, phase, and polarization. The Planetary Radar and Radio Science group at the Jet Propulsion Laboratory (JPL) has been involved in many planetary bistatic radar experiments since the 1970's using orbiters and Deep Space Network (DSN) antennas. The recent advances in Unmanned Aerial Vehicles (UAVs) technologies are making the UAVs more popular in scientific surveying applications. One such application is the use of UAVs in bistatic radar measurements to explore surfaces on Earth. Our analyses show that UAV-based bistatic radar measurements will improve our understanding of the finer-scale characteristic variations of the surface by acquiring the higher resolution data for a specific region of interest compared to data obtained from a spacecraft. The Mars helicopter, a technology demonstration to test the first powered flight on Mars, will be the beginning of a new era of exploration with UAVs on Mars. This leap in planetary UAV technology has renewed the importance of developing a miniaturized bistatic radar instrument (under 1 kg) compatible with a UAV platform able to meet the science requirements for studying surfaces on Earth, Mars, and other planetary bodies. As part of a task at JPL, we have been working on a technology demonstration using a compact bistatic radar instrument designed to be the payload of a UAV employing signals of opportunity from Earth's orbiters, i.e. Global Positioning System (GPS). In this paper, we present our design and development of the instrument, our evaluation of different L-band antennas, the performance of compact open-loop receivers in support of Earth and planetary bistatic radar observations, and the instrument fit test on an UAV platform. As part of this publication, we also highlight the results of a field experiment dedicated to test the sensitivity of the miniaturized bistatic radar instrument to different electrical properties of the surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.