Abstract
Two indigenous fish species, brown trout (Salmo trutta f. fario) and stone loach(Barbatula barbatula) were exposed tocomplex stressors (mixtures of environmentalpollutants) in laboratory and semi-fieldexperiments (aquaria connected to stream water)and in field studies. As a biomarker of effect,the level of the 70 kD heat shock protein(hsp70) was quantified in the liver of troutand loach. Laboratory experiments withdifferent pollutant mixtures did not mimic thehsp70-inducing or inhibiting potential of fieldconditions, whereas effects of long-termexposure in the bypass systems showed asignificant correlation with effects recordedin feral fish. Laboratory as well as semi-fieldstudies revealed the stress response to followan optimum curve, resulting in a maximum hsp70level under stress but rather low hsp70 levelswhen stressors (chemicals, high temperature)become too severe. Consequently, the hsp70level in the liver of both species was highlyseason-dependent with two peaks in late springand fall, and rather low hsp70 levels insummer, particularly in fish exposed to waterand sediment of the complexly polluted stream.In winter, the low hsp70 level of lab controlswas elevated by exposure to natural streamwater only, but elevation did not occur undercontrol conditions independent of apre-exposure to polluted streamwater two months earlier. Despite the highvariability of the hsp70 level within one yearand among five subsequent years, patternanalysis indicated the prevailing importance ofwater temperature on stress protein response.Temperature alone, however, could not explainthe regularly observed low summer levels inhsp70. Non-linear regression analysis on labcontrols revealed an optimum temperature(Topt) for the highest hsp70 level forboth fish species. In both investigated streams, thechemical influence led to a decrease in thehsp70 level only when Topt was surpassedby the ambient temperature at the same time.Otherwise, the chemical impact resulted in anelevated hsp70 level relative to the control.The study demonstrated the suitability of hsp70stress protein levels to integrate the responsedynamics of several different stressors and,therefore, to effectively function as abiomarker for the integrated effect of allenvironmental stressors acting on an organism(not only of chemical pollution). Rathercomplex kinetics of hsp70 elevation anddecrease should be taken into consideration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.