Abstract
Aortic regurgitation (AR) is a common complication following left ventricular assist device (LVAD) implantation. We evaluated the hemodynamic implications of AR in patients with HeartMate 3 (HM3) LVAD at baseline and in response to speed changes. Clinically stable outpatients supported by HM3 who underwent a routine hemodynamic ramp test were retrospectively enrolled in this analysis. Patients were stratified based on the presence of at least mild AR at baseline speed. Hemodynamic and echocardiographic parameters were compared between the AR and non-AR groups. Sixty-two patients were identified. At the baseline LVAD speed, 29 patients (47%) had AR, while 33 patients (53%) did not. Patients with AR were older and supported on HM3 for a longer duration. At baseline speed, all hemodynamic parameters were similar between the groups including central venous pressure, pulmonary capillary wedge pressure, pulmonary arterial pressures, cardiac output and index, and pulmonary artery pulsatility index (p > 0.05 for all). During the subacute assessment, AR worsened in some, but not all, patients, with increases in LVAD speed. There were no significant differences in 1-year mortality or hospitalization rates between the groups, however, at 1-year, ≥ moderate AR and right ventricular failure (RVF) were detected in higher rates among the AR group compared to the non-AR group (45% vs. 0%; p < 0.01, and 75% vs. 36.8%; p = 0.02, respectively). In a cohort of stable outpatients supported with HM3 who underwent a routine hemodynamic ramp test, the presence of mild or greater AR did not impact the ability of HM3 LVADs to effectively unload the left ventricle during early subacute assessment. Although the presence of AR did not affect mortality and hospitalization rates, it resulted in higher rates of late hemodynamic-related events in the form of progressive AR and RVF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.