Abstract
BackgroundThe burden of patients with heart failure on health care systems is widely recognised, although there have been few attempts to quantify individual patterns of care and differences in health service utilisation related to age, socio-economic factors and the presence of co-morbidities. The aim of this study was to assess the typical profile, trajectory and resource use of a cohort of Australian patients with heart failure using linked population-based, patient-level data.MethodsUsing hospital separations (Admitted Patient Data Collection) with death registrations (Registry of Births, Deaths and Marriages) for the period 2000–2007 we estimated age- and gender-specific rates of index admissions and readmissions, risk factors for hospital readmission, mean length of stay (LOS), median survival and bed-days occupied by patients with heart failure in New South Wales, Australia.ResultsWe identified 29,161 index admissions for heart failure. Admission rates increased with age, and were higher for males than females for all age groups. Age-standardised rates decreased over time (256.7 to 237.7/100,000 for males and 235.3 to 217.1/100,000 for females from 2002–3 to 2006–7; p = 0.0073 adjusted for gender). Readmission rates (any cause) were 27% and 73% at 28-days and one year respectively; readmission rates for heart failure were 11% and 32% respectively. All cause mortality was 10% and 28% at 28 days and one year. Increasing age was associated with more heart failure readmissions, longer LOS and shorter median survival. Increasing age, increasing Charlson comorbidity score and male gender were risk factors for hospital readmission. Cohort members occupied 954,888 hospital bed-days during the study period (any cause); 383,646 bed-days were attributed to heart failure admissions.ConclusionsThe rates of index admissions for heart failure decreased significantly in both males and females over the study period. However, the impact on acute care hospital beds was substantial, with heart failure patients occupying almost 200,000 bed-days per year in NSW over the five year study period. The strong age-related trends highlight the importance of stabilising elderly patients before discharge and community-based outreach programs to better manage heart failure and reduce readmissions.
Highlights
The burden of patients with heart failure on health care systems is widely recognised, there have been few attempts to quantify individual patterns of care and differences in health service utilisation related to age, socio-economic factors and the presence of co-morbidities
Cohort members occupied 954,888 hospital bed-days during the study period; 383,646 bed-days were attributed to heart failure admissions
The strong age-related trends highlight the importance of stabilising elderly patients before discharge and community-based outreach programs to better manage heart failure and reduce readmissions
Summary
The burden of patients with heart failure on health care systems is widely recognised, there have been few attempts to quantify individual patterns of care and differences in health service utilisation related to age, socio-economic factors and the presence of co-morbidities. The aim of this study was to assess the typical profile, trajectory and resource use of a cohort of Australian patients with heart failure using linked populationbased, patient-level data. Heart failure is associated with considerable morbidity and poor survival. It is characterised by numerous hospital readmissions and extensive use of health care resources [1-3]. The resulting substantial burden on health care systems and the associated costs are a consequence of ageing populations and improvements in the medical management of heart failure with the use of therapies such as beta-blockers, ACE inhibitors, aldosterone inhibitors and device therapies that prolong survival after ischaemic heart damage or heart failure related to hypertension and valvular heart disease. Morbidity estimates have typically been derived by applying international chronic heart failure incidence and prevalence data to Australian population estimates [4]. More direct estimates have been derived from the National Hospital
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have