Abstract

Environmentally cued hatching is well documented in anurans, enabling embryos to escape diverse threats. However, knowledge of anuran hatching mechanisms is limited and based largely on aquatic-breeding species without known plasticity in hatching timing. Generally, hatching gland cells produce a hatching enzyme that degrades the vitelline membrane. We investigated hatching and its regulation in terrestrial embryos of hourglass treefrogs, Dendropsophus ebraccatus, which accelerate hatching to escape dehydration. We specifically tested if changes in hatching gland cell development or hatching enzyme gene expression are associated with accelerated hatching. We measured perivitelline chamber size of well-hydrated eggs over development as an indicator of breakdown of the vitelline membrane and found that the size of the perivitelline chamber increased steadily until hatching, suggesting gradual hatching enzyme release and vitelline membrane degradation. Hatching gland cells peaked in abundance and began regression substantially prior to hatching, but we found no developmental differences in the abundance or surface area of hatching gland cells between dry and well-hydrated embryos. Hatching enzyme gene expression also peaked early in development then declined, with no difference between hydration treatments. In D. ebraccatus breakdown of the vitelline membrane appears gradual, mediated by hatching enzyme release starting long before hatching. However, hatching acceleration is not associated with ontogenetic changes in hatching gland cell development or hatching enzyme gene expression. This hatching process contrasts with that of red-eyed treefrogs, Agalychnis callidryas, which appear to release enzyme acutely at hatching, yet both species are capable of hatching to escape acute threats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.