Abstract
It is known that the Brauer--Manin obstruction to the Hasse principle is vacuous for smooth Fano hypersurfaces of dimension at least $3$ over any number field. Moreover, for such varieties it follows from a general conjecture of Colliot-Thélène that the Brauer--Manin obstruction to the Hasse principle should be the only one, so that the Hasse principle is expected to hold. Working over the field of rational numbers and ordering Fano hypersurfaces of fixed degree and dimension by height, we prove that almost every such hypersurface satisfies the Hasse principle provided that the dimension is at least $3$. This proves a conjecture of Poonen and Voloch in every case except for cubic surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.