Abstract

It was conjectured by Mordell [6] that the Hasse principle holds for cubic surfaces in 3-dimensional projective space other than cones†: i.e., that such a surface defined over the rational field 0 has a rational point whenever it has points defined over every p -adic field Q p . This conjecture was verified for singular cubic surfaces by Skolem [11” and for surfaces with by Selmer [9]: but it was disproved for cubic surfaces in general by Swinnerton-Dyer [12] (see also Mordell [7]). It therefore becomes of interest to specify fairly wide classes of cubic surfaces for which the Hasse principle does hold. It was shown independently by F. Châtєlet and by Swinnerton-Dyer (both, apparently, unpublished) that this is the case when it contains a set of either 3 or 6 mutually skew lines which are rational as a whole (and trivially true when there is a rational pair of lines, since then there are always rational points). Selmer [9] conjectures on the basis of numerical evidence that the Hasse principle is also true for all surfaces of the type (1). It is the object of this note to disprove this by showing that the Hasse principle fails for

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call