Abstract

Morrison [25] has observed that the Maxwell-Vlasov and Poisson-Vlasov equations for a collisionless plasma can be written in Hamiltonian form relative to a certain Poisson bracket. We derive another Poisson structure for these equations by using general methods of symplectic geometry. The main ingredients in our construction are the symplectic structure on the co-adjoint orbits for the group of canonical transformations, and the symplectic structure for the phase space of the electromagnetic field regarded as a gauge theory. Our Poisson bracket satisfies the Jacobi identity, whereas Morrison's does not [37]. Our construction also shows where canonical variables can be found and can be applied to the Yang-Mills-Vlasov equations and to electromagnetic fluid dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.