Abstract

Water utilities must disinfect their water despite the formation of carcinogenic disinfection byproducts (DBPs) such as haloacetic acids (HAAs) upon chlorination. Although employment of a biologically active carbon (BAC) filtration process is able to reduce the HAA level preventively by removing the HAA precursors and correctively by removing the already-formed HAAs, this research reported an HAA leap in a bench-scale BAC filter effluent upon a disinfectant switch from chlorine to chloramine, posing a pressure of meeting the stringent HAA regulations. The HAA6 (sum of six HAAs) tripled from a 5μg/L base level to a maximum of 17μg/L during progressive switches with 3 chloramine doses at 5, 25, and 50mg/L. Dichloroacetic acid (DCAA) accounted for the majority of the leap, which also influenced the bromine substitution factor during the HAA formation. Filtration of distilled water using heat-deactivated media evidenced slight HAA desorption and suggested potential roles of soluble microbial products from biofilms as new HAA precursors for a real BAC filter experiencing a disinfectant switch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.