Abstract

Most research on the occurrence of chlorinated disinfection by-products (DBPs) in drinking water has focused on trihalomethane (THM) formation and evolution, in particular within distribution systems. In this research, we investigated the variability of the occurrence of haloacetic acids (HAAs) during the treatment process in two facilities where surface water is pre-chlorinated before being treated by conventional physico-chemical processes. The investigation focused on both seasonal and point-to-point fluctuations of HAAs. In both facilities, samples were collected weekly during 1 complete year at four points in order to generate robust data on HAAs and on complementary parameters. The results showed that the initial formation of HAAs was the highest and the most variable in the plant where levels of DBP precursor indicators and the pre-chlorination dose were both higher and more variable. Subsequent formation of HAAs from the pre-chlorination point until the settled water occurred due to remaining levels of residual chlorine and DBP precursors. However, HAA levels and in particular dichloroacetic acid (DCAA) (the preponderant HAA species in the waters under study) decreased dramatically during filtration, very probably because of biodegradation within the filter. The effect of filtration on DCAA fate was season-dependant, with the highest degradation in warm water periods and practically no variation during winter. Statistical modeling was applied to empirically identify the operational factors responsible for HAA formation and fate. Model performance to identify HAA variability in waters following pre-chlorination was much better than for water following filtration, which is due to the lack of information on mechanisms and conditions favoring DCAA degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call