Abstract

The Hall–Paige conjecture asserts that a finite group has a complete mapping if and only if its Sylow subgroups are not cyclic. The conjecture is now proved, and one aim of this paper is to document the final step in the proof (for the sporadic simple group J4).We apply this result to prove that primitive permutation groups of simple diagonal type with three or more simple factors in the socle are non-synchronizing. We also give the simpler proof that, for groups of affine type, or simple diagonal type with two socle factors, synchronization and separation are equivalent.Synchronization and separation are conditions on permutation groups which are stronger than primitivity but weaker than 2-homogeneity, the second of these being stronger than the first. Empirically it has been found that groups which are synchronizing but not separating are rather rare. It follows from our results that such groups must be primitive of almost simple type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.