Abstract
Motivated by the study of several problems in algebraic graph theory, we study finite primitive permutation groups whose point stabilizers are soluble. Such primitive permutation groups are divided into three types: affine, almost simple and product action, and the product action type can be reduced to the almost simple type. This paper gives an explicit list of the soluble maximal subgroups of almost simple groups. The classification is then applied to classify edge-primitive s-arc transitive graphs with s ⩾ 4, solving a problem proposed by Richard M. Weiss (1999).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.