Abstract
Recent research has shown that, when a liquid is partially wetting or non-wetting against a very smooth solid surface, the conventional no-slip boundary condition can break down. Under such circumstances, the Reynolds equation is no longer applicable. In the current paper, the Reynolds equation is extended to consider the sliding, hydrodynamic lubrication condition where the lubricant has a no-slip boundary condition against the moving solid surface but can slip at a critical shear stress against the stationary surface. It is shown that such a ‘half-wetted’ bearing is able to combine good load support resulting from fluid entrainment with very low friction due to very low or zero Couette friction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.