Abstract

Journal bearing performance depends on the boundary conditions at the interfaces between the fluid and the solid surfaces. In the derivation of the Reynolds equation used to predict the bearing performance, the no-slip boundary conditions of the fluid and the solid interfaces are used. Recent research has shown that a slip can occur on specially made surfaces, the conventional no-slip boundary conditions are not valid, and the Reynolds equation is no longer applicable. If the slip is allowed to occur in certain regions, the fluid flow in the bearing can be altered, and the bearing stability characteristics can be improved. In this article, the numerical stability analysis of a journal bearing based on the extent of the slip region on the bearing surface is analyzed. An extended Reynolds equation is derived based on the slip length model, using a no-slip boundary condition against the journal surface and the slip against the bearing surface. A linearized perturbation method is used to determine the stability limit of a rigid rotor supported on two symmetrical journal bearings. Using the linear stability analysis, the linearized stiffness and damping coefficients, the threshold speed, and the critical whirl ratio are evaluated. The effects of the slip parameter on the bearing stability performance are discussed. The results show that with a critical shear stress of zero, an increase in the stability threshold can be achieved with a higher value of the nondimensional slip length and a smaller extent of the slip region on the bearing surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call