Abstract

Let k be an infinite field and A a standard G-algebra. This means that there exists a positive integer n such that A = R/I where R is the polynomial ring R := k[Xv …, Xn] and I is an homogeneous ideal of R. Thus the additive group of A has a direct sum decomposition A = ⊕ At where AiAj ⊆ Ai+j. Hence, for every t ≥ 0, At is a finite-dimensional vector space over k. The Hilbert Function of A is defined by

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.