Abstract

Several studies reported alterations of the human gut microbiota (GM) during COVID-19. To evaluate the potential role of the GM as an early predictor of COVID-19 at disease onset, we analyzed gut microbial samples of 315 COVID-19 patients that differed in disease severity. We observed significant variations in microbial diversity and composition associated with increasing disease severity, as the reduction of short-chain fatty acid producers such as Faecalibacterium and Ruminococcus, and the growth of pathobionts as Anaerococcus and Campylobacter. Notably, we developed a multi-class machine-learning classifier, specifically a convolutional neural network, which achieved an 81.5% accuracy rate in predicting COVID-19 severity based on GM composition at disease onset. This achievement highlights its potential as a valuable early biomarker during the first week of infection. These findings offer promising insights into the intricate relationship between GM and COVID-19, providing a potential tool for optimizing patient triage and streamlining healthcare during the pandemic.IMPORTANCEEfficient patient triage for COVID-19 is vital to manage healthcare resources effectively. This study underscores the potential of gut microbiota (GM) composition as an early biomarker for COVID-19 severity. By analyzing GM samples from 315 patients, significant correlations between microbial diversity and disease severity were observed. Notably, a convolutional neural network classifier was developed, achieving an 81.5% accuracy in predicting disease severity based on GM composition at disease onset. These findings suggest that GM profiling could enhance early triage processes, offering a novel approach to optimizing patient management during the pandemic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.