Abstract

BPI-inducible protein A (BipA) is a conserved ribosome-associated GTPase in bacteria that is structurally similar to other GTPases associated with protein translation, including IF2, EF-Tu, and EF-G. Its binding site on the ribosome appears to overlap those of these translational GTPases. Mutations in the bipA gene cause a variety of phenotypes, including cold and antibiotics sensitivities and decreased pathogenicity, implying that BipA may participate in diverse cellular processes by regulating translation. According to recent studies, a bipA-deletion strain of Escherichia coli displays a ribosome assembly defect at low temperature, suggesting that BipA might be involved in ribosome assembly. To further investigate BipA's role in ribosome biogenesis, here, we compared and analyzed the ribosomal protein compositions of MG1655 WT and bipA-deletion strains at 20 °C. Aberrant 50S ribosomal subunits (i.e. 44S particles) accumulated in the bipA-deletion strain at 20 °C, and the ribosomal protein L6 was absent in these 44S particles. Furthermore, bipA expression was significantly stimulated at 20 °C, suggesting that it encodes a cold shock-inducible GTPase. Moreover, the transcriptional regulator cAMP receptor protein (CRP) positively promoted bipA expression only at 20 °C. Importantly, GFP and α-glucosidase refolding assays revealed that BipA has chaperone activity. Our findings indicate that BipA is a cold shock-inducible GTPase that participates in 50S ribosomal subunit assembly by incorporating the L6 ribosomal protein into the 44S particle during the assembly.

Highlights

  • BPI-inducible protein A (BipA) is a conserved ribosome-associated GTPase in bacteria that is structurally similar to other GTPases associated with protein translation, including IF2, EF-Tu, and EF-G

  • Deletion of E. coli bipA led to an accumulation of unprocessed 23S and 16S rRNAs with the concomitant appearance of abnormal 50S ribosomal subunit particles at low temperature [21]; it remains ambiguous what role BipA plays in ribosome assembly and how BipA modulates its ribosome association upon nucleotide binding

  • We explored the possible role of BipA in ribosome biogenesis and demonstrated, for the first time, that BipA is a novel ribosome assembly GTPase with chaperone activity in its G-domain

Read more

Summary

Introduction

BPI-inducible protein A (BipA) is a conserved ribosome-associated GTPase in bacteria that is structurally similar to other GTPases associated with protein translation, including IF2, EF-Tu, and EF-G. Its binding site on the ribosome appears to overlap those of these translational GTPases. Mutations in the bipA gene cause a variety of phenotypes, including cold and antibiotics sensitivities and decreased pathogenicity, implying that BipA may participate in diverse cellular processes by regulating translation. Our findings indicate that BipA is a cold shock–inducible GTPase that participates in 50S ribosomal subunit assembly by incorporating the L6 ribosomal protein into the 44S particle during the assembly. The former includes EF-G, EF-Tu, IF2, and LepA and participates in facilitating protein synthesis or controlling translation fidelity. In addition to the ribosome components, BipA binds to tRNA located in the A-site of the ribosome [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.