Abstract
Murraya koenigii is an edible herb widely used in folk medicine. Here we report that girinimbine, a carbazole alkaloid isolated from this plant, inhibited the growth and induced apoptosis in human hepatocellular carcinoma, HepG2 cells. The MTT and LDH assay results showed that girinimbine decreased cell viability and increased cytotoxicity in a dose-and time-dependent manner selectively. Girinimbine-treated HepG2 cells showed typical morphological features of apoptosis, as observed from normal inverted microscopy and Hoechst 33342 assay. Furthermore, girinimbine treatment resulted in DNA fragmentation and elevated levels of caspase-3 in HepG2 cells. Girinimbine treatment also displayed a time-dependent accumulation of the Sub-G0/G1 peak (hypodiploid) and caused G0/G1-phase arrest. Together, these results demonstrated for the first time that girinimbine could effectively induce programmed cell death in HepG2 cells and suggests the importance of conducting further investigations in preclinical human hepatocellular carcinoma models, especially on in vivo efficacy, to promote girinimbine for use as an anticancer agent against hepatocellular carcinoma.
Highlights
Cancer represents one of the most deadly diseases in the World
Cell viability was assessed by MTT assay
The results from this study revealed that girinimbine has significant anticancer activity against hepatocellular carcinoma (HCC), HepG2 via induction of cell cycle arrest
Summary
Cancer represents one of the most deadly diseases in the World. Among the various types of cancer, hepatocellular carcinoma (HCC) is a common malignancy with high metastasis rates [1]. There is evidence suggesting that the incidence of HCC is rising all around the World [2,3]. The complexity of the disease advocates the need for the involvement of hepatologists, pathologists, radiologists, surgeons and oncologists in patient care [4]. The chances of recurrence of the disease are more than. 70%, even after surgical resection [5]. There is minimal survival rate with the systemic chemotherapeutic agents, which have toxic effects [6]. There is an important need for new natural anticancer compounds in chemotherapeutics
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have