Abstract

An XPS and AES study of the early stages of oxidation of γ-TiAl(1 1 1) surfaces at 650 °C under 1.0 × 10 −7–1.0 × 10 −6 mbar O 2 is reported. The data evidence a first regime of oxidation characterized by the growth of a pure alumina layer followed by a second regime of simultaneous oxidation of both alloying elements. In the first regime, continuous alumina layers from ∼0.4 to ∼1.5 nm thick have been observed by angle-resolved XPS. The composition of the metallic phase underneath the growing oxide is modified by a depletion of Al and the injection of Al vacancies in the metal during the growth of the transient alumina formed at 650 °C. The onset of Ti oxidation was repeatedly observed for a critical concentration in the modified region of the alloy underneath the alumina layer: Ti 75±2Al 25±2 (Ti 50Al 17±2V(Al) 33±2), showing that decreasing the number of Ti–Al bonds in the modified intermetallic region increases the activity of Ti up to a critical point where its oxidation at the oxide/metal interface becomes competitive with that of Al. The growth of Ti 3+ and Ti 4+ oxide particles observed above the alumina layer by angle-resolved XPS indicates the transport of titanium cations trough the alumina layer and their subsequent reaction with oxygen at the outer gas/oxide interface. Improving structural ordering in the intermetallic phase slows down the growth kinetics of the alumina layer and the related Al-depletion of the substrate, and increases the resistance of the alloy to the subsequent oxidation of Ti. This is assigned to two combined effects: a slower diffusion of Al in the better ordered metallic phase and the growth of less defective alumina layers allowing to slow down the ionic transport through the oxide. Highly stable and corrosion resistant alloy surfaces covered by a 0.4 nm thick alumina layer have been obtained by slowly oxidizing the alloy at lower partial pressure (<5.0 × 10 −10 mbar O 2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.