Abstract
Multilayers of TiC/α-Al 2O 3 consisting of three (1 μm thick) alumina layers separated by thin (∼10 nm) oxidized TiC layers have been deposited onto c-, a- and r-surfaces of single crystals of α-Al 2O 3 by chemical vapour deposition (CVD). The aim of this paper is to describe and compare the detailed microstructure of the different multilayer coatings by using transmission electron microscopy (TEM). The general microstructure of the alumina layers is very different when deposited onto different surfaces of α-Al 2O 3 single crystal substrates. On the c- and a-surfaces the alumina layers grow evenly resulting in growth of single crystal layers of TiC and alumina throughout the coating. However, when deposited on the r-surface the alumina layers generally grow unevenly. No pores are observed within the alumina layers, while a small number of pores are found at the interfaces below the TiC layers. The TiC and alumina layers grow epitaxially on the c- and a-surface substrates. On the r-surface, epitaxy is present only at some rare locations. The TiC layers were oxidized in situ for 2 min in CO 2/H 2 prior to the alumina layer deposition. For all three samples chemical analyses show that the whole TiC layer is oxidized. On the c- and a-surfaces the TiC layer was oxidized to an fcc TiCO phase. On the r-surface the oxidation stage resulted in a transformation of the initially deposited fcc TiC to a monoclinic TiCO phase, which appears to be a modified TiO structure with a high carbon content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.