Abstract
In order to promote the growth of contemporary music and the reform of music, this article designs an improved collaborative filtering (CF) algorithm to solve the problem of sparse matrix in traditional recommendation algorithms. The data matrix is dimensionally reduced to find the nearest neighbor, so as to realize personalized recommendation of music teaching resources in colleges and universities. The test results show that the accuracy of the proposed teaching resource recommendation algorithm is improved by 22.56% compared with the traditional CF algorithm. The improved CF algorithm can provide more accurate prediction, and the recommendation effect of the improved algorithm is better than the original algorithm, which can effectively avoid the sparse matrix problem faced by the CF algorithm, and provide technical support for the development of contemporary music discipline and the reform of music discipline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Web-Based Learning and Teaching Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.