Abstract
Abstract We show that a group of diffeomorphisms D on the open unit interval I, equipped with the topology of uniform convergence on any compact set of the derivatives at any order, is non-regular: the exponential map is not defined for some path of the Lie algebra. This result extends to the group of diffeomorphisms of finite dimensional, non-compact manifold M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.