Abstract
The set C(X,Y) of continuous functions from a topological space X into a topological space Y is extended to the set D(X,Y) of densely continuous forms from X to Y, such form being a kind of multifunction from X to Y. The topologies of pointwise convergence, uniform convergence, and uniform convergence on compact sets are defined for D(X,Y), for locally compact spaces X and metric spaces Y having a metric satisfying the Heine–Borel property. Under these assumptions, D(X,Y) with the uniform topology is shown to be completely metrizable. In addition, if X is σ compact, D(X,Y) is completely metrizable under the topology of uniform convergence on compact sets. For this latter topology, an Ascoli theorem is established giving necessary and sufficient conditions for a subset of D(X,Y) to be compact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.