Abstract
In this paper we study the category of finitely generated modules of finite projective dimension over a class of weakly triangular algebras, which includes the algebras whose idempotent ideals have finite projective dimension. In particular, we prove that the relations given by the (relative) almost split sequences generate the group of all relations for the Grothendieck group of P <∞(Λ) if and only if P <∞(Λ) is of finite type. A similar statement is known to hold for the category of all finitely generated modules over an artin algebra, and was proven by C.M.Butler and M. Auslander ( [B] and [A]).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have