Abstract

We derive a formula for the gradients of the total scattering cross-section (TSCS) with respect to positions of a set of cylindrical scatterers. The analytic form enhances modeling capability when combined with optimization algorithms and parallel computing. As application of the method, we consider a gradient-based minimization of TSCS for a set of cylindrical obstacles by incrementally repositioning them so that they eventually act as an effective cloaking device. The gradient-based optimization algorithm reduces the TSCS by evaluating its derivative with respect to the cylinder positions and then perturbatively optimizing the position of each cylinder in the cloaking device while taking into account acoustic multiple scattering between the cylinders. The method is illustrated for clusters of hard cylinders and sets of elastic thin shells in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.