Abstract

Alterations in synaptic transmission within the spinal cord dorsal horn play a key role in the development of pathological pain. While N-methyl-D-aspartate (NMDA) receptors and activity-dependent synaptic plasticity have been the focus of research for many years, recent evidence attributes very specific functions to inhibitory glycinergic and gamma-aminobutyric acid (GABA)-ergic neurotransmission in the generation of inflammatory and neuropathic pain. The central component of inflammatory pain originates from a disinhibition of dorsal horn neurons, which are relieved from glycinergic neurotransmission by the inflammatory mediator prostaglandin E2 (PGE2). PGE2 activates prostaglandin E receptors of the EP2 subtype and leads to a protein kinase A-dependent phosphorylation and inhibition of glycine receptors containing the alpha3 subunit (GlyRalpha3). This GlyRalpha3 is distinctly expressed in the superficial dorsal horn, where nociceptive afferents terminate. Other but probably very similar disinhibitory mechanisms may well contribute to abnormal pain occurring after peripheral nerve injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.