Abstract
Using the C-fibre reflex as a nociceptive response elicited by a wide range of stimulus intensities in the rat, we recently reported that a single treatment with (+)-HA966, a glycine site-specific NMDA receptor antagonist: (1) potentiates morphine antinociception; and (2) reverses an established morphine tolerance. We presently aimed at determining whether our observation was likely to result from a direct effect on the spinal cord or an indirect effect of supraspinal origin. In a 2 × 2 × 2 experimental design, we compared the effects of 5 mg/kg morphine in: (1) sham-operated rats or animals whose brainstems had been transected at the level of the obex; (2) rats that were implanted with pellets, either 150 mg morphine or placebo; and (3) animals injected either with saline or 10 mg/kg (+)-HA966. The control C-fibre reflexes were similar in all groups of animals. As compared to “non-tolerant” rats, the depressive effect of morphine was weaker in “morphine-tolerant” animals where the threshold did not change following morphine but the gain of the stimulus-response curve decreased, albeit to a significantly lesser extent than in the “non-tolerant” group. Whether in “non-tolerant” or “tolerant” groups, the effects of morphine were stronger in “obex-transected” than in “sham-operated” animals. In all groups, the effects of morphine were potentiated by the preliminary administration of (+)-HA966. However, in the “morphine-tolerant” group, the preliminary administration of (+)-HA966 was more potent in the “sham-operated” than in the “obex-transected” groups. Since overall effects were very similar in “sham-operated” and “obex-transected” animals, we concluded for our model that the critical site for the expression of the neuronal plastic changes associated with morphine tolerance lies in the spinal cord.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have