Abstract

High serum uric acid levels elevate pro-inflammatory–state gout crystal arthropathy and place individuals at high risk for cardiovascular morbidity and mortality. Genome-wide scans in the genetically isolated Sardinian population identified variants associated with serum uric acid levels as a quantitative trait. They mapped within GLUT9, a Chromosome 4 glucose transporter gene predominantly expressed in liver and kidney. SNP rs6855911 showed the strongest association (p = 1.84 × 10−16), along with eight others (p = 7.75 × 10−16 to 6.05 × 10−11). Individuals homozygous for the rare allele of rs6855911 (minor allele frequency = 0.26) had 0.6 mg/dl less uric acid than those homozygous for the common allele; the results were replicated in an unrelated cohort from Tuscany. Our results suggest that polymorphisms in GLUT9 could affect glucose metabolism and uric acid synthesis and/or renal reabsorption, influencing serum uric acid levels over a wide range of values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.