Abstract

Abstract Based on models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the present study investigates the South Asian high (SAH) change in response to global warming. Under global warming, the selected 16 coupled general circulation models all feature an elevation of geopotential height at 100 hPa to the south of the SAH climatological position; an easterly response is found over the northern Indian Ocean in all the models, while a westerly response is found over subtropical Asia. The ridges of the SAH shift equatorward in 75% of models. Using the linear baroclinic model, it is found that the combined effects of latent heating and the mean advection of stratification change (MASC) are mainly responsible for those responses. The MASC mainly leads to the aforementioned easterly and westerly responses; the latent heating contributes to the geopotential height response and the easterly response over the northern Indian Ocean. The most important intermodel diversity is found in the 100-hPa circulation change under global warming, accounting for more than half of the total intermodel variance. The intermodel spread of latent heating and the MASC are important factors in driving the 100-hPa circulation diversity. Furthermore, analysis shows that the projected uncertainties in humidity, vertical velocity, and global mean temperature change are the three most important sources of intermodel diversity for the 100-hPa circulation change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call